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Today’s Objectives

NO CLASS ON WEDNESDAY

Topics:

• Dictionary Learning

Disclaimer: Material used: 

Zhang, Zheng, et al. "A survey of sparse representation: 
algorithms and applications." IEEE access 3 (2015): 490-530.
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Sparse Signal Modeling

Key idea

Dictionary learning 
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Transform
 DFT
 DCT
 Wavelets

Learned from examples
 KSVD
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A special type of dictionary: two-ortho case

• Motivation for over-complete dictionary: many signals are

mixtures of diverse phenomena; no single basis can describe 
them well

Two-ortho case: A is a concatenation of 2 orthonormal 
matrices

• A classical example: A = [I,F] (F : Fourier matrix)

representing a signal y as a superposition of spikes and 
sinusoids
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Example

5Spring Semester 2019
CS-570 Statistical Signal Processing

University of Crete, Computer Science Department



Dictionary learning

Each example is                    
a linear combination                   
of atoms from D

DX A

Each example has a 
sparse representation with 
no more than L atoms
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Divergence – Matrix Rank
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The rank of a matrix M is the size of the largest collection of linearly
independent columns of M (the column rank) or the size of the largest
collection of linearly independent rows of M (the row rank)

• Row Echelon Form

Rank=2

A matrix is in row echelon form if
(i) all nonzero rows are above any rows of all 

zeroes
(ii) The leading coefficient of a nonzero row is 

always strictly to the right of the leading 
coefficient of the row above it

https://en.wikipedia.org/wiki/Leading_coefficient#Linear_algebra


Matrix Rank

• The rank of an m × n matrix is a nonnegative integer and cannot be 
greater than either m or n. That is, rank(M) ≤ min(m, n). 

• A matrix that has a rank as large as possible is said to have full rank; 
otherwise, the matrix is rank deficient.
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Matrix Rank
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Singular Value Decomposition (SVD)

Given any mn matrix M, algorithm to find matrices U, Σ, and V such 

that M = UΣVT

• U: left singular vectors (orthonormal)

• Σ: diagonal containing singular values

• V: right singular vectors (orthonormal)
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TVUM 

mm mn V is nn
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Singular Value Decomposition (SVD)

Properties

• The si are called the singular values of M

• If M is singular, some of the si will be 0

• In general rank(M) = number of nonzero si

• SVD is mostly unique (up to permutation of SV)
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M-term approximation

• SVD can be used to compute optimal low-rank 
approximations.

• Approximation problem: Find Ak of rank k such that

Ak and X are both mn matrices.

Typically, want k << r.
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Low-rank Approximation

• Solution via SVD
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set smallest r-k

singular values to zero
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Method of optimal directions (K. Engan and S. Husoy 1999)
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The K-SVD (M. Aharon, et al. 2006)
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K-SVD algorithm
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D
Initialize      

D

Sparse Coding

Use MP

Dictionary Update

Column-by-Column by      
SVD computation

X
T T

𝛼
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K-SVD details
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K-SVD details
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K-SVD algorithm

Here is three-dimensional data set,

spanned by over-complete dictionary of 

four vectors.

What we want is to update each of these

vector to better represent the data.
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K-SVD algorithm

If we do sparse coding using only three 

vectors, from the dictionary, we cannot 

perfectly represent the data.

1. Remove one of these vector 
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K-SVD algorithm

2. Find approximation error on each data point
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K-SVD algorithm

2. Find approximation error on each data point
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K-SVD algorithm

3. Apply SVD on error matrix

The SVD provides us a set of orthogonal 

basis vector sorted in order of decreasing 

ability to represent the variance error matrix.
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K-SVD algorithm

3. Replace the chosen vector with the

first eigenvector of error matrix.

4. Do the same for other vectors.
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K-SVD algorithm

But, there is not all, but a few data points 

using the chosen vector.

Then, it is not necessary to calculate error for 

all data points, but instead a few of them that are

using the chosen vector.
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K-SVD algorithm

D
?dk 

X 𝜶
T
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K-SVD algorithm

1. Initialize the dictionary randomly

2. Using any pursuit algorithm to find a sparse coding 𝛼, for

the input data X using dictionary D. 

3. Update D:

a. Remove a basis vector 𝑑𝑘

b. Compute the approximation error 𝐸𝑘 on data points 

that were actually using 𝑑𝑘

c. Take SVD of  𝐸𝑘

d. Update 𝑑𝑘.

4. Repeat to step 2 until convergence.
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Example
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Compute

o The Mutual Coherence μ 𝐃 is the largest off-diagonal 
entry in absolute value

o Other ways to characterize the dictionary 

o Restricted Isometry Property - RIP, 

o Exact Recovery Condition - ERC, 

o Spark

=

Assume 
normalized 
columns

𝐃

𝐃T

𝐃T𝐃

The Mutual Coherence
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Basis pursuit sucess

Theorem: Given a noisy signal y = 𝐃α + v where 
v 2 ≤ ε and α is sufficiently sparse,

then Basis-Pursuit: minα α 1 s. t. 𝐃α − y 2 ≤ ε

leads to a stable result:   α − α 2
2 ≤

4𝜀2

1−μ 4 α 0−1
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Dictionary Learning

• How to correctly choose the basis for representing the data ?

𝐷𝛼 = 𝑥
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Accuracy increases with dictionary size

32

Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. K. Nayar. Video from a single coded 
exposure photograph using a learned over-complete dictionary. In IEEE Intl. Conf. Computer 
Vision, 2011
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Denoising
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Image Denoising [E. & Aharon (‘06)]

The MAP estimator for denoising this image patch is built by solving



De-noising

• Learn a patch dictionary.

• For each patch, compute 
the sparse representation 
then use it to reconstruct 
the patch.
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What data to train on?

Option 1:

 Use a database of images,

 Works fine (~0.5-1dB below the SotA). 

Option 2: 

 Use the corrupted image itself !!  

 Simply sweep through all patches of size                     
N-by-N (overlapping blocks), 

 Image of size 10002 pixels ~106

examples to use – more than enough.

 This works much better!
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